Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170604, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38309362

RESUMEN

The pollution due to plastic and other anthropogenic particles has steadily increased over the last few decades, presenting a significant threat to the environment and organisms, including avian species. This research aimed to investigate the occurrence of anthropogenic pollutants in the digestive and respiratory systems of four birds of prey: Common Buzzard (Buteo buteo), Black Kite (Milvus migrans), Eurasian Sparrowhawk (Accipiter nisus), and Northern Goshawk (Accipiter gentilis). The results revealed widespread contamination in all species with microplastics (MPs) and cellulosic anthropogenic fibers (AFs), with an average of 7.9 MPs and 9.2 AFs per specimen. Every digestive system contained at least one MP, while 65 % of specimens exhibited MPs in their respiratory systems. This is the work reporting a high incidence of MPs in the respiratory system of birds, clearly indicating inhalation as a pathway for exposure to plastic pollution. The content of MPs and AFs varied significantly when comparing specimens collected from central Madrid with those recovered from other parts of the region, including rural environments, suburban areas, or less populated cities. This result aligns with the assumption that anthropogenic particles disperse from urban centers to surrounding areas. Additionally, the dominant particle shape consisted of small-sized fibers (> 98 %), primarily composed of polyester, polyethylene, acrylic materials, and cellulose fibers exhibiting indicators of industrial treatment. These findings emphasize the necessity for further research on the impact of plastic and other anthropogenic material contamination in avian species, calling for effective strategies to mitigate plastic pollution.


Asunto(s)
Águilas , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Polietilenos , Ciudades , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
2.
Sci Total Environ ; 905: 166923, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37704133

RESUMEN

Plastic production continues to increase every year, yet it is widely acknowledged that a significant portion of this material ends up in ecosystems as microplastics (MPs). Among all the environmental compartments affected by MPs, the atmosphere remains the least well-known. Here, we conducted a one-year simultaneous monitoring of atmospheric MPs deposition in ten urban areas, each with different population sizes, economic activities, and climates. The objective was to assess the role of the atmosphere in the fate of MPs by conducting a nationwide quantification of atmospheric MP deposition. To achieve this, we deployed collectors in ten different urban areas across continental Spain and the Canary Islands. We implemented a systematic sampling methodology with rigorous quality control/quality assurance, along with particle-oriented identification and quantification of anthropogenic particle deposition, which included MPs and industrially processed natural fibres. Among the sampled MPs, polyester fibres were the most abundant, followed by acrylic polymers, polypropylene, and alkyd resins. Their equivalent sizes ranged from 22 µm to 398 µm, with a median value of 71 µm. The particle size distribution of MPs showed fewer large particles than expected from a three-dimensional fractal fragmentation pattern, which was attributed to the higher mobility of small particles, especially fibres. The atmospheric deposition rate of MPs ranged from 5.6 to 78.6 MPs m-2 day-1, with the higher values observed in densely populated areas such as Barcelona and Madrid. Additionally, we detected natural polymers, mostly cellulosic fibres with evidence of industrial processing, with a deposition rate ranging from 6.4 to 58.6 particles m-2 day-1. There was a positive correlation was found between the population of the study area and the median of atmospheric MP deposition, supporting the hypothesis that urban areas act as sources of atmospheric MPs. Our study presents a systematic methodology for monitoring atmospheric MP deposition.

3.
Water Res ; 238: 120044, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37156103

RESUMEN

The purpose of this study was to investigate the occurrence of microplastics (MPs) in drinking water in Spain by comparing tap water from different locations using common sampling and identification procedures. We sampled tap water from 24 points in 8 different locations from continental Spain and the Canary Islands by means of 25 µm opening size steel filters coupled to household connections. All particles were measured and spectroscopically characterized including not only MPs but also particles consisting of natural materials with evidence of industrial processing, such as dyed natural fibres, referred insofar as artificial particles (APs). The average concentration of MPs was 12.5 ± 4.9 MPs/m3 and that of anthropogenic particles 32.2 ± 12.5 APs/m3. The main synthetic polymers detected were polyamide, polyester, and polypropylene, with lower counts of other polymers including the biopolymer poly(lactic acid). Particle size and mass distributions were parameterized by means of power law distributions, which allowed performing estimations of the concentration of smaller particles provided the same scaling parameter of the power law applies. The calculated total mass concentration of the identified MPs was 45.5 ng/L. The observed size distribution of MPs allowed an estimation for the concentration of nanoplastics (< 1 µm) well below the ng/L range; higher concentrations are not consistent with scale invariant fractal fragmentation. Our findings showed that MPs in the drinking water sampled in this work do not represent a significant way of exposure to MPs and would probably pose a negligible risk for human health.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos , Agua Potable/análisis , España , Ciudades , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Polímeros
4.
Sci Total Environ ; 883: 163447, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37094675

RESUMEN

Mismanaged plastic litter submitted to environmental conditions may breakdown into smaller fragments, eventually reaching nano-scale particles (nanoplastics, NPLs). In this study, pristine beads of four different types of polymers, three oil-based (polypropylene, PP; polystyrene, PS; and low-density polyethylene, LDPE) and one bio-based (polylactic acid, PLA) were mechanically broken down to obtain more environmentally realistic NPLs and its toxicity to two freshwater secondary consumers was assessed. Thus, effects on the cnidarian Hydra viridissima (mortality, morphology, regeneration ability, and feeding behavior) and the fish Danio rerio (mortality, morphological alterations, and swimming behavior) were tested at NPLs concentrations in the 0.001 to 100 mg/L range. Mortality and several morphological alterations were observed on hydras exposed to 10 and 100 mg/L PP and 100 mg/L LDPE, whilst regeneration capacity was overall accelerated. The locomotory activity of D. rerio larvae was affected by NPLs (decreased swimming time, distance or turning frequency) at environmentally realistic concentrations (as low as 0.001 mg/L). Overall, petroleum- and bio-based NPLs elicited pernicious effects on tested model organisms, especially PP, LDPE and PLA. Data allowed the estimation of NPLs effective concentrations and showed that biopolymers may also induce relevant toxic effects.


Asunto(s)
Hydra , Petróleo , Contaminantes Químicos del Agua , Animales , Polímeros/toxicidad , Organismos Acuáticos/metabolismo , Polietileno , Microplásticos , Petróleo/toxicidad , Poliestirenos/toxicidad , Plásticos/toxicidad , Biopolímeros/toxicidad , Pez Cebra/metabolismo , Poliésteres/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
5.
J Hazard Mater ; 445: 130625, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056024

RESUMEN

In this work, we used palladium-doped polystyrene NPLs (PS-NPLs with a primary size of 286 ± 4 nm) with an irregular surface morphology which allowed for particle tracking and evaluation of their toxicity on two primary producers (cyanobacterium, Anabaena sp. PCC7120 and green algae, Chlamydomonas reinhardtii) and one primary consumer (crustacean, Daphnia magna). the concentration range for Anabaena and C. reinhardtii was from 0.01 to 1000 mg/L and for D. magna, the range was from 7.5 to 120 mg/L.EC50 s ranged from 49 mg NPLs/L for D. magna (48hEC50 s) to 248 mg NPLs/L (72hEC50 s for C. reinhardtii). PS-NPLs induced dose-dependent reactive oxygen species overproduction, membrane damage and metabolic alterations. To shed light on the environmental fate of PS-NPLs, the short-term distribution of PS-NPLs under static (using lake water and sediments) and stirring (using river water and sediments) conditions was studied at laboratory scale. The results showed that most NPLs remained in the water column over the course of 48 h. The maximum percentage of settled particles (∼ 30 %) was found under stirring conditions in comparison with the ∼ 10 % observed under static ones. Natural organic matter increased the stability of the NPLs under colloidal state while organisms favored their settlement. This study expands the current knowledge of the biological effects and fate of NPLs in freshwater environments.


Asunto(s)
Organismos Acuáticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Poliestirenos/metabolismo , Agua Dulce , Daphnia , Agua/farmacología , Contaminantes Químicos del Agua/metabolismo
6.
Chemosphere ; 326: 138475, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36958502

RESUMEN

Farmlands represent a source of aged plastics and pesticides to the surrounding environments. It has been shown that chemicals can be sorbed and desorbed from plastics, but the interaction between plastic and mixtures of pesticides and their effects on freshwater biota has not been assessed yet. The aim of the work was to assess the potential role of agricultural plastics as vectors for a mixture of two herbicides and the impact of the herbicide mixture lixiviated from them towards the freshwater microalga Chlamydomonas reinhardtii. Pristine and aged polyethylene plastics collected from agricultural areas were exposed to the herbicides, bifenox, oxyfluorfen and their mixtures. The microalgae were exposed for 72 h to the leachates desorbed from plastics and the effect was quantified in terms of total chlorophyll content and several physiological parameters assessed by flow cytometry. Our results showed that changes in physicochemical properties (hydroxyl and carbonyl index, hydrophobicity, texture) in aged plastics increased their capacity to retain and to desorb the herbicides. Microalgae exposed to leachates containing bifenox, oxyfluorfen, or their mixture showed reactive oxygen species overproduction, lipid peroxidation, membrane potential hyperpolarization, intracellular pH acidification, and a loss of metabolic activity. The toxicological interactions of the leachate mixture were assessed using the Combination Index (CI)-isobologram method showing antagonism at low effect levels turning to synergism when the effect increased. In this work, we proved the hypothesis that ageing increases the capacity of agricultural plastics to behave as vector for toxic chemicals to the biota.


Asunto(s)
Herbicidas , Microalgas , Plaguicidas , Contaminantes Químicos del Agua , Herbicidas/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Éteres Difenilos Halogenados/farmacología , Plaguicidas/farmacología
7.
Sci Total Environ ; 859(Pt 1): 160231, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36402321

RESUMEN

This study aimed at evaluating the influence of biofilm in the role of microplastics (MPs) as vectors of pollutants and their impact on Daphnia magna. To do this, virgin polyethylene MPs, (PE-MPs, 40-48 µm) were exposed for four weeks to wastewater (WW) from influent and effluent to promote biofouling. Then, the exposed PE-MPs were put in contact with triclosan. Finally, the toxicity of TCS-loaded and non-TCS loaded PE-MPs were tested on the survival of D. magna adults for 21 days. Results from metabarcoding analyses indicated that exposure to TCS induced shifts in the bacterial community, selecting potential TCS-degrading bacteria. Results also showed that PE-MPs were ingested by daphnids. The most toxic virgin PE-MPs were those biofouled in the WW effluent. The toxicity of TCS-loaded PE-MPs biofouled in the WW effluent was even higher, reporting mortality in all tested concentrations. These results indicate that biofouling of MPs may modulate the adsorption and subsequent desorption of co-occurring pollutants, hence affecting their potential toxicity towards aquatic organisms. Future studies on realistic environmental plastic impact should include the characterization of biofilms growing on plastic. Since inevitably plastic biofouling occurs over time in nature, it should be taken into account as it may modulate the sorption of co-occurring pollutants.


Asunto(s)
Contaminantes Ambientales , Triclosán , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos/toxicidad , Polietileno , Triclosán/toxicidad , Triclosán/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Ambientales/análisis
8.
J Hazard Mater ; 443(Pt B): 130271, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36351347

RESUMEN

The plastisphere has been widely studied in the oceans; however, there is little information on how living organisms interact with the plastisphere in freshwater ecosystems, and particularly on how this interaction changes over time. We have characterized, over one year, the evolution of the eukaryotic and bacterial communities colonizing four everyday plastic items deployed in two sites of the same river with different anthropogenic impact. α-diversity analyses showed that site had a significant role in bacterial and eukaryotic diversity, with the most impacted site having higher values of the Shannon diversity index. ß-diversity analyses showed that site explained most of the sample variation followed by substrate type (i.e., plastic item) and time since first colonization. In this regard, core microbiomes/biomes in each plastic at 1, 3, 6 and 12 months could be identified at genus level, giving a global overview of the evolution of the plastisphere over time. The measured concentration of antibiotics in the river water positively correlated with the abundance of antibiotic resistance genes (ARGs) on the plastics. These results provide relevant information on the temporal dynamics of the plastisphere in freshwater ecosystems and emphasize the potential contribution of plastic items to the global spread of antibiotic resistance.


Asunto(s)
Microbiota , Plásticos , Plásticos/análisis , Antibacterianos/farmacología , Ríos , Farmacorresistencia Microbiana/genética , Microbiota/genética , Biopelículas , Genes Bacterianos
9.
Chemosphere ; 303(Pt 1): 134966, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35588878

RESUMEN

Bioplastics are thought as a safe substitute of non-biodegradable polymers. However, once released in the environment, biodegradation may be very slow, and they also suffer abiotic fragmentation processes, which may give rise to different fractions of polymer sizes. We present novel data on abiotic hydrolytic degradation of polycaprolactone (PCL), tracking the presence of by-products during 132 days by combining different physicochemical techniques. During the study a considerable amount of two small size plastic fractions were found (up to âˆ¼ 6 mg of PCL by-product/g of PCL beads after 132 days of degradation); and classified as submicron-plastics (sMPs) from 1 µm to 100 nm and nanoplastics (NPs, <100 nm) as well as oligomers. The potential toxicity of the smallest fractions, PCL by-products < 100 nm (PCL-NPs + PCL oligomers) and the PCL oligomers single fraction, was tested on two ecologically relevant aquatic primary producers: the heterocystous filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, and the unicellular cyanobacterium Synechococcus sp. PCC 7942. Upon exposure to both, single and combined fractions, Reactive Oxygen Species (ROS) overproduction, intracellular pH and metabolic activity alterations were observed in both organisms, whilst membrane potential and morphological damages were only observed upon PCL-NPs + PCL oligomers exposure. Notably both PCL by-products fractions inhibited nitrogen fixation in Anabaena, which may be clearly detrimental for the aquatic trophic chain. As conclusion, fragmentation of bioplastics may render a continuous production of secondary nanoplastics as well as oligomers that might be toxic to the surrounding biota; both PCL-NPs and PCL oligomers, but largely the nanoparticulate fraction, were harmful for the two aquatic primary producers. Efforts should be made to thoroughly understand the fragmentation of bioplastics and the toxicity of the smallest fractions resulting from that degradation.


Asunto(s)
Anabaena , Cianobacterias , Contaminantes Químicos del Agua , Biodegradación Ambiental , Microplásticos , Plásticos , Poliésteres , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
10.
Sci Total Environ ; 827: 154438, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35276161

RESUMEN

The generation of small fragments from the environmental ageing of microplastics (MPs) is still a poorly known process. This work addresses the fragmentation of MPs obtained from marine debris consisting of polyethylene and polypropylene (PE and PP in environmental mixture) and polystyrene (PS) after exposure to accelerated ageing by irradiation and mechanical stirring. Number particle size distribution in the 1-100 µm range was assessed by combining laser diffractometry with particle counts from flow cytometry. The results showed the generation of a high number of small MP particles, which reached 105-106 items/mg of plastic with most fragments <2 µm. The results showed that environmentally aged MPs give rise to a larger number of small MPs in a pattern consistent with progressive fragmentation in the three spatial dimensions. The proportion of small MPs was much higher than that found in current sampling campaigns, suggesting a severe underestimation of the environmental presence of small MPs. We also demonstrated the generation of nanoplastics (NPs) in the fraction <1 µm from irradiated runs. The results showed that the mechanism that produced nanoplastics (NPs) from MPs was irradiation, which yielded up to 1011-1013 NPs/g with particle size in the few hundreds of nm range. Our results are relevant for the assessment of fate and risk of plastic debris in the environment showing that the number of small plastic fragments produced during the ageing of MPs is much larger than expect from the extrapolation of larger size populations.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Plásticos , Polietileno , Contaminantes Químicos del Agua/análisis
11.
Sci Total Environ ; 819: 153063, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35031361

RESUMEN

The knowledge about the interaction of nanoplastics with other aquatic pollutants and their combined effects on biota is very scarce. In this work, we studied the interaction between polystyrene nanoplastics (PS NPs) (30 nm) and the micropollutants in a biologically treated wastewater effluent (WW). The capacity of PS NPs to sorb micropollutants was studied as well as their single and combined toxicity towards three freshwater organisms: the recombinant bioluminescent cyanobacterium, Anabaena sp. PCC 7120 CPB4337; the duckweed, Spirodela polyrhiza and the cladoceran, Daphnia magna. The endpoints were the inhibition of bioluminescence, the growth inhibition of the aquatic plant and the immobilization of D. magna after 24, 72 and 48 h of exposure, respectively. Combination Index (CI)-isobologram method was used to quantify mixture toxicity and the nature of interactions. PS NPs sorbed a variety of chemicals present in WW as micropollutants in a range of tens of ng/L to µg/L. It was found that those pollutants with positive charge were the main ones retained onto PS NPs, which was attributed to the electrostatic interaction with the negatively charged PS NPs. Regarding the toxicological effects, single exposure to PS NPs affected the three tested organisms. However, single exposure to WW only had a negative impact on the cyanobacterium and S. polyrhiza with no observed toxicity to D. magna. Regarding PS NPs-WW combined exposure, a reduction of toxicity in comparison with single exposure was observed probably due to the sorption of micropollutants onto PS NPs, which resulted in lower bioavailability of the micropollutants. In addition, the formation of PS NPs-WW heteroaggregates was observed which could result in lower bioavailability of PS NPs and sorbed micropollutants, thus lowering toxicity. This study represents a near-realistic scenario approach to the potential sorption of wastewater pollutants onto nanoplastics that could alter the toxicological effect on the biota.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Microplásticos , Nanopartículas/toxicidad , Poliestirenos/química , Poliestirenos/toxicidad , Aguas Residuales , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
12.
Ecotoxicol Environ Saf ; 232: 113213, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085885

RESUMEN

Current knowledge on the capacity of plastics as vectors of microorganisms and their ability to transfer microorganisms between different habitats (i.e. air, soil and river) is limited. The objective of this study was to characterise the evolution of the bacterial community adhered to environmental plastics [low-density polyethylene (LDPE)] across different environments from their point of use to their receiving environment destination in the sea. The study took place in a typical Mediterranean intermittent river basin in Larnaka, Cyprus, characterised by a large greenhouse area whose plastic debris may end up in the sea due to mismanagement. Five locations were selected to represent the environmental fate of greenhouse plastics from their use, through their abandonment in soil and subsequent transport to the river and the sea, taking samples of plastics and the surrounding environments (soil and water). The bacterial community associated with each sample was studied by 16S rRNA metabarcoding; also, the main physicochemical parameters in each environmental compartment were analysed to understand these changes. The identification and chemical changes in greenhouse plastics were tracked using Attenuated Total Reflection Fourier Transform Infra-red spectroscopy (ATR-FTIR). Scanning Electron Microscope (SEM) analysis demonstrated an evolution of the biofilm at each sampling location. ß-diversity studies showed that the bacterial community adhered to plastics was significantly different from that of the surrounding environment only in samples taken from aqueous environments (freshwater and sea) (p-value p-value > 0.05). The environmental parameters (pH, salinity, total nitrogen and total phosphorus) explained the differences observed at each location to a limited extent. Furthermore, bacterial community differences among samples were lower in plastics collected from the soil than in plastics taken from rivers and seawater. Six genera (Flavobacterium, Altererythrobacter, Acinetobacter, Pleurocapsa, Georgfuchsia and Rhodococcus) were detected in the plastic, irrespective of the sampling location, confirming that greenhouse plastics can act as possible vectors of microorganisms between different environments: from their point of use, through a river system to the final coastal receiving environment. In conclusion, this study confirms the ability of greenhouse plastics to transport bacteria, including pathogens, between different environments. Future studies should evaluate these risks by performing complete sequencing metagenomics to decipher the functions of the plastisphere.


Asunto(s)
Plásticos , Agua de Mar , Bacterias/genética , ARN Ribosómico 16S/genética , Ríos , Agua de Mar/microbiología
13.
Chemosphere ; 288(Pt 2): 132530, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34653476

RESUMEN

In this work, the microplastic content of sediments collected in July 2020 between 5 and 7 m depth was studied in four locations of La Palma island (Canary Islands, Spain). At each sampling location, three samples were taken parallel to the shoreline. The microplastic content in each sampling corer was studied every 2.5 cm depth after digestion with a H2O2 solution followed by flotation in a saturated NaCl solution. Visualization of the final filtrates under a stereomicroscope revealed that all the sediment samples evaluated contained mostly microfibers (98.3%) which were mainly white/colorless (86.0%) and blue (9.8%), with an average length of 2423 ± 2235 (SD) mm and an average concentration of 2682 ± 827 items per kg of dry weight, being the total number of items found 1,019. Fourier Transform Infrared microscopy analysis of 13.9% (n = 139) of the microfibers also showed that they were mainly cellulosic (81.3%). No significant differences were found between the depths of the sediment. However, significant differences were found between the number of fibers from the sampling sites at the east and west of the island. Such variability could be driven by the winds and ocean mesoscale dynamics in the area. This study confirms the wide distribution of microfibers in sediments from an oceanic island like La Palma, providing their first report in marine sediments of the Canary Islands.


Asunto(s)
Microplásticos , Plásticos , Islas del Atlántico , Peróxido de Hidrógeno , España
14.
Environ Pollut ; 294: 118622, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871644

RESUMEN

Ingestion of microplastics by aquatic organisms is often harmful due to the dilution of their regular food with low-calorie microplastic particles, but can also be beneficial if nutritious biofilms are present on the microplastic surface. This begs the question: is ingestion of microplastic harmful or beneficial and can the net effect of the two mechanisms be quantified? Here, we quantified these harmful and beneficial effects on Daphnia magna, using dose-response tests with clean and biofouled microplastic respectively, and determined the trade-off between these counteracting effects. A population model was developed to calculate the isoclines for zero population growth, separating the regime where adverse food dilution dominated from that where the beneficial biofilm vector mechanism dominated. Our results show that the organisms grew better when exposed to biofouled microplastic compared to pristine microplastic. Very good model predictions (R2 = 0.868-0.991) of the effects of biofouled microplastic were obtained based on literature parameter values, with optimization required only for the two sub-model parameters driving the dose-effect relationships for pristine microplastic. These results contradict previous sudies were only pristine microplastic were used and demonstrate that the ruling paradigm of unambiguously adverse microplastic effects is not ecologically justifiable.


Asunto(s)
Biopelículas , Daphnia , Microplásticos , Contaminantes Químicos del Agua , Animales , Ingestión de Alimentos , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis
15.
Sci Total Environ ; 813: 151902, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34838550

RESUMEN

Composted Organic Fraction of Municipal Solid Waste (OFMSW) is used in agricultural soils as a source of organic matter and nutrients. Besides, its use avoids landfilling or incineration following the principles of circular economy. It is well established that source separated OFMSW is suitable for compost production, but its quality depends on their content in non-compostable materials. In this work, we selected and studied the final refined compost form five OFMSW facilities over a five-month period. The plants displayed differences in collection systems, concentration on non-desired materials, treatment technology and density of served population. The presence of plastic was studied using a separation and identification process that consisted of oxidation and flotation followed by spectroscopic identification. The results showed a concentration of plastic impurities in the 10-30 items/g of dry compost range. The concentration of small fragments and fibres (equivalent diameter < 5 mm) was in the 5-20 items/g of dry weight range and were dominated by fibres (25% of all particles <500 µm). Five polymers represented 94% of the plastic items: polyethylene, polystyrene, polyester, polypropylene, polyvinyl chloride, and acrylic polymers in order of abundance. Polyethylene was more abundant in films, polystyrene in fragments, polypropylene in filaments, and fibres were dominated by polyester. Our results showed that smaller plants, with OFMSW door-to-door collection systems produced compost with less plastic of all sizes. Compost from big facilities fed by OFMSW from street bin collection displayed the highest contents of plastics. No debris from compostable bioplastics were found in any of the samples, meaning that if correctly composted their current use does not contribute to the spreading of anthropogenic pollution. Our results suggested that the use of compostable polymers and the implementation of door-to-door collection systems could reduce the concentration of plastic impurities in compost from OFMSW.


Asunto(s)
Compostaje , Eliminación de Residuos , Microplásticos , Plásticos , Suelo , Residuos Sólidos/análisis
16.
Rev Environ Contam Toxicol ; 257: 163-218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34487249

RESUMEN

Plastic litter dispersed in the different environmental compartments represents one of the most concerning problems associated with human activities. Specifically, plastic particles in the micro and nano size scale are ubiquitous and represent a threat to human health and the environment. In the last few decades, a huge amount of research has been devoted to evaluate several aspects of micro/nano-plastic contamination: origin and emissions, presence in different compartments, environmental fate, effects on human health and the environment, transfer in the food web and the role of associated chemicals and microorganisms. Nevertheless, despite the bulk of information produced, several knowledge gaps still exist. The objective of this paper is to highlight the most important of these knowledge gaps and to provide suggestions for the main research needs required to describe and understand the most controversial points to better orient the research efforts for the near future. Some of the major issues that need further efforts to improve our knowledge on the exposure, effects and risk of micro/nano-plastics are: harmonization of sampling procedures; development of more accurate, less expensive and less time-consuming analytical methods; assessment of degradation patterns and environmental fate of fragments; evaluating the capabilities for bioaccumulation and transfer to the food web; and evaluating the fate and the impact of chemicals and microorganisms associated with micro/nano-plastics. The major gaps in all sectors of our knowledge, from exposure to potentially harmful effects, refer to small size microplastics and, particularly, to the occurrence, fate and effects of nanoplastics.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Microplásticos , Plásticos/toxicidad , Investigación , Contaminantes Químicos del Agua/análisis
17.
Environ Pollut ; 289: 117919, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34385135

RESUMEN

In this work, we studied the hydrolytic and photochemical degradation of three low-density polyethylene (LDPE) materials, within the size range of microplastics (MP). The MPs were exposed to mechanical agitation and UV irradiation equivalent to one year of solar UVB + UVA in a stirred photoreactor. Flow cytometry was used to track the formation of small (1-25 µm) MPs by applying Mie's theory to derive the size of MP particles from scattering intensity readings. The calculation was based on a calibration with polystyrene (PS) beads. The results showed that the generation of 1-5 µm MP reached 104-105 MPs in the 1-25 µm range per gram of LDPE. ATR-FTIR and micro-FTIR measurements evidenced the formation of oxygenated moieties, namely hydroxyl, carbonyl, and carbon-oxygen bonds, which increased with irradiation time. We also found evidence of the production of a high number of nanoplastics (<1 µm, NPs). The Dynamic Light Scattering size of secondary NPs was in the hundreds of nm range and might represent up to 1010 NPs per gram of LDPE. Our results allowed the unambiguous spectroscopic assessment of the generation of NPs from LDPE under conditions simulating environmental exposure to UV irradiation and used flow cytometry for the first-time to track the formation of secondary MPs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Polietileno , Poliestirenos , Contaminantes Químicos del Agua/análisis
18.
Sci Total Environ ; 795: 148640, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34246139

RESUMEN

Microplastics (MPs) have been found everywhere as they are easily transported between environmental compartments. Through their transport, MPs are quickly colonized by microorganisms; this microbial community is known as the plastisphere. Here, we characterized the plastisphere of three MPs, one biodegradable (PHB) and two non-biodegradables (HDPE and LDPE), deployed in an Arctic freshwater lake for eleven days. The plastisphere was found to be complex, confirming that about a third of microbial colonizers were viable. Plastisphere was compared to microbial communities on the surrounding water and microbial mats on rocks at the bottom of the lake. Microbial mats followed by MPs showed the highest diversity regarding both prokaryotes and eukaryotes as compared to water samples; however, for fungi, MPs showed the highest diversity of the tested substrates. Significant differences on microbial assemblages on the three tested substrates were found; regarding microbial assemblages on MPs, bacterial genera found in polar environments such as Mycoplana, Erythromicrobium and Rhodoferax with species able to metabolize recalcitrant chemicals were abundant. Eukaryotic communities on MPs were characterized by the presence of ciliates of the genera Stentor, Vorticella and Uroleptus and the algae Cryptomonas, Chlamydomonas, Tetraselmis and Epipyxis. These ciliates normally feed on algae so that the complexity of these assemblages may serve to unravel trophic relationships between co-existing taxa. Regarding fungal communities on MPs, the most abundant genera were Betamyces, Cryptococcus, Arrhenia and Paranamyces. MPs, particularly HDPE, were enriched in the sulI and ermB antibiotic resistance genes (ARGs) which may raise concerns about human health-related issues as ARGs may be transferred horizontally between bacteria. This study highlights the importance of proper waste management and clean-up protocols to protect the environmental health of pristine environments such as polar regions in a context of global dissemination of MPs which may co-transport microorganisms, some of them including ARGs.


Asunto(s)
Lagos , Microplásticos , Bacterias , Farmacorresistencia Microbiana , Humanos , Plásticos , Prohibitinas
19.
Sci Total Environ ; 767: 144481, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33450591

RESUMEN

Microplastics are ubiquitous and their sampling is a difficult task. Honeybees interact with the environment inside their foraging range and take pollutants with them. In this work, we demonstrated for the first time that worker bees can act as active samplers of microplastics. We collected honeybees from apiaries located in the centre of Copenhagen and from nearby semiurban and rural areas. We showed the presence of microplastics in all sampled locations mostly in the form of fragments (52%) and fibres (38%) with average equivalent diameter of 64 ± 39 µm for fibres and 234 ± 156 µm for fragments. The highest load corresponded to urban apiaries, but comparable number of microplastics was found in hives from suburban and rural areas, which can be explained by the presence of urban settlements inside the foraging range of worker bees and to the easy dispersion of small microplastics by wind. Micro-FTIR analysis confirmed the presence of thirteen synthetic polymers, the most frequently of which was polyester followed by polyethylene and polyvinyl chloride. Our results demonstrated the presence of microplastics attached to the body of the honeybees and opens a new research pathway to their use as active biosamplers for anthropogenic pollution.

20.
Sci Total Environ ; 757: 143832, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33246729

RESUMEN

Microbial colonization of microplastics (MPs) in aquatic ecosystems is a well-known phenomenon; however, there is insufficient knowledge of the early colonization phase. Wastewater treatment plant (WWTP) effluents have been proposed as important pathways for MPs entry and transport in aquatic environments and are hotspots of bacterial pathogens and antibiotic resistance genes (ARGs). This study aimed at characterizing bacterial communities in the early stage of biofilm formation on seven different types of MPs deployed in two different WWTPs effluents as well as measuring the relative abundance of two ARGs (sulI and tetM) on the tested MPs. Illumina Miseq sequencing of the 16S rRNA showed significant higher diversity of bacteria on MPs in comparison with free-living bacteria in the WWTP effluents. ß-diversity analysis showed that the in situ environment (sampling site) and hydrophobicity, to a lesser extent, had a role in the early bacterial colonization phase. An early colonization phase MPs-core microbiome could be identified. Furthermore, specific core microbiomes for each type of polymer suggested that each type might select early attachment of bacteria. Although the tested WWTP effluent waters contained antibiotic resistant bacteria (ARBs) harboring the sulI and tetM ARGs, MPs concentrated ARBs harboring the sulI gene but not tetM. These results highlight the relevance of the early attachment phase in the development of bacterial biofilms on different types of MP polymers and the role that different types of polymers might have facilitating the attachment of specific bacteria, some of which might carry ARGs.


Asunto(s)
Microplásticos , Purificación del Agua , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos , Bacterias/genética , Genes Bacterianos , Plásticos , ARN Ribosómico 16S/genética , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...